
When there are complaints about the
quality of the software, they are

usually directed at the software’s behav-
ior, and not the underlying text [1].
Therefore it is important to define what
constitutes bad behavior in software.

Bad software behavior is a function
of the environment that the software
resides in, and the environment is a mix-
ture of the underlying hardware, the
operating system, potential threats, the
operational profile, other external soft-
ware components that interact with the
software, and the manner in which the
software will be used [2]. Since these fac-
tors affect the software system’s behav-
ior, the architectural plan for how com-
ponents are to be integrated should be,
in part, based on these factors.

For example, a toaster comes with a
warranty and that warranty assumes a
particular environment, such as sitting
on a kitchen countertop. Now take a
working toaster, put it in another envi-
ronment, like a bathtub full of water,
and the behavior of the toaster is not
going to be the same, and the warranty
no longer applies. The same argument
applies to software.

Will the Real Operational
Profile Please Stand Up?
One of the most important issues dur-
ing requirements generation is defining,
as best as possible, the software environ-
ment; its operational profile is key.

Each piece of software has a set of
input vectors that may be executed dur-
ing testing or field usage. That is the soft-
ware’s input domain. The operational profile is
simply a probability distribution function
(PDF) for the input vectors of the input
domain. This means each input vector
has a certain probability of being chosen
during testing or field usage, and the
PDF is what defines the probabilities for
each input vector. For example, if the
input domain has 10 input vectors, and
each input vector is as equally likely to be
selected as any other vector, then each

vector has a 10 percent chance of being
selected. (Note that the operational pro-
file is highly important when system-level
reliability testing occurs [3].)

Thus, without an accurate description
of the operational profile, predictions
concerning how the software will behave
in the field are unlikely to be accurate
since each individual input vector can
cause differing behaviors. Therefore,
spending the extra time to contemplate
the eventual operational profile and tar-
get environment is often as important as
defining the software’s functionality dur-
ing requirements definition.

Tolerating Component and
Subsystem Failures
More and more software is delivered to
system integrators in black-box form;
these components are packaged as exe-
cutable objects (with licensing agree-
ments that forbid decompilation back to
source code), e.g., dynamic link libraries
that originate from third-party sources,
e.g., commercial off-the-shelf (COTS)
software. A worthy goal, then, is to pro-
vide a methodology for determining
how well a system can perform when
particular black boxes are of such poor
quality that interoperability and integra-
tion problems are almost inevitable.

One technique for assessing the level
of interoperability between COTS soft-
ware components and custom compo-
nents is called Interface Propagation
Analysis (IPA) [4]. IPA perturbs (i.e.,
corrupts) the states that propagate
through the interfaces that connect
COTS software components to other
components. IPA is one form of software
fault injection [5]. By corrupting data
going from one component to a succes-
sor component, failure of the predeces-
sor is simulated, and its impact on the
successor can be assessed. This
approach allows for measuring the level
of intolerance when one component
fails, sending junk information (or even
a lack of information) to its neighbor.

To modify the information (states)
that components use for inter-compo-
nent communication, write access to
those states is required (to modify the
data in those states during the simula-
tion). This is done by creating a small
software routine called PERTURB that
replaces the original output state with a
different (corrupted) state. This is, of
course, done as the system executes. By
simulating the failure of various soft-
ware components, we can assess
whether the remainder of the system
can tolerate it.

I will illustrate this by using
Advanced IBM Unix’s (AIX) cos() func-
tion in this example. Note that AIX’s
cos() is a fine-grained COTS utility for
which we do not have access to the
source code:

double cos(double x)

This declaration indicates that the cos()
function receives a double integer (con-
tained in variable x) and returns a double
integer. Because of C’s language con-
straints, the only output from cos() is
the returned value, and hence that is all
that IPA fault injector can corrupt.

To see how this analysis works, con-
sider an application that contains the
following code:

if (cos(a) > THRESHOLD)
{
do something

}

The goal, then, is to determine how the
application will behave if cos() returns
incorrect information. To do so, the
return value from the call is modified:

if (PERTURB(cos(a)) > THRESHOLD)
{
do something

}

Note that IPA is more than just an

Software Component Interoperability

Jeffrey Voas
SAIC

When a software system fails, a confusing and complex liability problem ensues for all parties that have contributed soft-
ware functionality (whether commercial off-the-shelf [COTS] or custom) to the system. This article explores the interop-
erability problems created by defective COTS software components, and, in particular, the hidden interfaces and non-func-
tional behaviors. It also looks into the problem of composing non-functional behaviors that are related to quality-of-serv-
ice attributes.

28 CROSSTALK The Journal of Defense Software Engineering November 2005

November 2005 www.stsc.hill.af.mil 29

interesting research idea. It has been used
successfully in a variety of critical soft-
ware systems that required better tech-
niques to perform impact analysis and
assess potential interoperability conflicts;
those case studies are compiled in [5].

Composing ilities
Clearly, today’s COTS components are
much more substantial in functionality
and complexity than the previous AIX
example. One of the real problems in
composing today’s COTS components
that have advanced functionality and
complexity is combining large compo-
nents that each have varying quality-of-
service (QoS) attributes into one com-
ponent that now inherits a new set of
QoS attributes.

Much of the work from the past 10
years into component-based software
engineering (CBSE) and component-
based development (CBD) has dealt
with functional composability (FC). FC
is concerned with whether the following
is true:

F(A) _ F(B) = F(A _ B)

where,

_ is some mathematical operator

That is to determine whether a com-
posite system, F(A _ B), is created that
has the desired functionality after join-
ing A and B. Therefore, A and B now
have a way to communicate, whether
one-directional or bidirectional. Instead
of acting alone, they now act together as
one unit.

But, increasingly, the software com-
munity is discovering that FC, even if it
were a solved problem, is not mature
enough for other serious concerns that
arise in CBSE and CBD such as the prob-
lem of composing ilities. Ilities are non-
functional, QoS properties of software
components and they define characteris-
tics such as security, reliability, fault-toler-
ance, performance, availability, safety,
testability, survivability, maintainability,
etc. The properties, as well as others, are
what ultimately determine whether the
software is well-behaved or not.

The problem stems from our inability
to know a priori, for example, what the
security of a system composed of two
components – A and B – will be even if
we have knowledge about the security
capabilities built into A and knowledge
about the security capabilities of B. Why?
Because the security of the composite
system is based on more than just the

security of the individual components.
For example, suppose that A is an

operating system and B is an intrusion
detection system. Operating systems
usually have some level of authentica-
tion security built into them, and intru-
sion detection systems have definitions
for the types of event patterns that like-
ly warn of an attack. Thus the security
of the composition of these two com-
ponents depends on the security models
built into the individual components.

But even if A has a worthless security
policy or flawed implementation, the
composite can still be secure. How? By
simply making the performance of A so
poor that no one can gain access, i.e., if
the intrusion detection system is so ineffi-
cient at performing an authentication,
then in a strange way, security is actually
offered. And if the implementation of
A’s security mechanism is so unreliable
that it disallows access to all users, even
legitimate ones, then strangely security is
again increased. While these last two
examples are not a reasonable way to
achieve higher levels of system security,
both do actually decrease the likelihood
that a system will be successfully attacked.

Using the same example of A and B,
this time assume that A provides excel-
lent security and B provides excellent
security. The usefulness of B’s security
mechanisms is a function of calendar
time because new threats and ways to
intrude are always being discovered. So
even if you could create a scheme that
determines the following:

Security(A) _ Security(B) = Security
(A _ B)

the security offered by B is always a
function of which version of B is being
composed with A, what recent new
threats have arisen, and how many of
these new attack patterns have been
built into B.

So the question then comes down to
which ilities, if any, are easy to compose?
The answer is that there are no ilities
that are easy to compose, and some are
much harder than others. Further, there
are no widely accepted algorithms for
how to do so.

For this problem applied to reliability,
consider a 2-component system in which
component A feeds information in B,
and B produces the output of the com-
posite (two components in series).
Assume that both components are reli-
able. What can we assume about the
composite's reliability? While this infor-
mation certainly suggests that the com-

posite system will be reliable, it must be
recognized that components (which were
tested in isolation for their individual reli-
abilities) can suddenly behave unreliably
when connected to each other, particular-
ly if the isolated test distributions did not
at all reflect the type of information that
A will be sending to B.

This brings us back to the impor-
tance of understanding the environment
and operational profile for each compo-
nent. Further, there can be non-func-
tional behaviors that cannot be observed
nor manifest themselves until after com-
position occurs. Such behaviors can
undermine the reliability of the compo-
sition. Finally, if one of the components
is simply the wrong component –
although highly reliable – then naturally
the resulting system will be useless.

In addition to reliability and security,
one ility that, at least on the surface,
appears to have the best possibility of
successful composability is perform-
ance. But even that is problematic from
a practical sense. The reason stems from
the fact that even if a performance
analysis was performed on a single com-
ponent, the practical consequences on
that component’s performance after a
composition with another component
may depend heavily on the hardware and
other physical resources. That could
require that different hardware variables
might need to be dragged along with a
certificate that states only minimal,
worst-case claims about the perform-
ance of the component.

For example, in the pharmaceutical
industry, drugs come with endless warn-
ings/rules as to who should take them and
who should not. In the discussion here,
the hardware variables are the various
other medical circumstances of an indi-
vidual slated for a particular drug (liver
problems, heart problems, etc.). Clearly,
this complex issue creates serious prag-
matic difficulties and again takes us back
to the need for a precise definition of
what is the real environment of a software
component [2, 6]. Today, the definition of
what is the real environment of a compo-
nent is an open question, needing new
thinking and new research efforts [7].

Note that non-functional behaviors
are particularly worrisome in COTS
software products. Non-functional
behaviors can include malicious code
(Trojan horses, logic bombs, etc.) and
any other behavior or side effect that is
not documented.

Another worrisome problem facing
CBSE and CBD is hidden interfaces.
Hidden interfaces typically are channels

Software Component Interoperability

30 CROSSTALK The Journal of Defense Software Engineering November 2005

Software Engineering Technology

through which application or compo-
nent software is able to convince the
operating system to execute undesirable
tasks or processes.

Interestingly, IPA can partially
address the issue of detecting hidden
interfaces and non-functional behaviors
by forcing software systems to reveal
those behaviors after the input stream of
a COTS component receives corrupted
input. Injecting corrupt information
into a component can possibly force it
to execute different (and rarely execut-
ed) code paths, flushing out behaviors
that would not normally occur with
uncorrupted information.

The reason that IPA can only be par-
tially successful in doing so is that IPA is
a function of (1) the number of cor-
rupted inputs used, and (2) the number
of executions of the software. Just as
exhaustive testing is the only way to guar-
antee correctness via testing, IPA is lim-
ited in the amount of analysis it can per-
form to detect hidden interfaces and
non-functional behaviors. In short, you
cannot test every potential combination
of ways that you can inject corrupted
data to see what results, and where those

results propagate.u

References
1. Voas, J., and C. Vossler. “Defective

Software: An Overview of Legal
Remedies and Technical Measures
Available to Consumers.” Academic
Press 53 (2001): 451-497.

2. U.S. Patent No. 6,862,696: System
and Method for Software Certifica-
tion. 1 Mar. 2005.

3. Voas, J. “Would the Real Operational
Profile Please Stand Up?” IEEE
Software 17.2 (Mar. 2000): 87-89.

4. Friedman, M., and J. Voas. Software
Assessment: Reliability, Safety, Testa-
bility. New York: John Wiley & Sons,
1995.

5. Voas, J., and G. McGraw. Software
Fault Injection: Inoculating Pro-
grams Against Errors. New York:
John Wiley & Sons, 1998.

6. Voas, J. “Certifying Off-the-Shelf
Software Components.” IEEE Com-
puter 31.6 (June 1998): 53-59.

7. Whittaker, J., and J. Voas. “Towards a
More Reliable Theory of Software
Reliability.” IEEE Computer 33.12
(Dec. 2000): 36-42.

About the Author

Jeffrey Voas is director
of Systems Assurance
Technologies at Science
Applications Internation-
al Corporation (SAIC).
Before joining SAIC, he

was the chief scientist at Cigital. Voas
has been highly active in the software
engineering research community for
over 15 years. He has served on numer-
ous journal and magazine editorial
boards, written more than 125 papers,
co-authored two books, and is currently
the 2005 Institute of Electrical and
Electronics Engineers Reliability Society
president.

SAIC
Crystal Gateway #4
200 12th ST S STE 1500
Arlington, VA 22202
Phone: (703) 414-3842
Fax: (703) 414-8250
E-mail: jeffrey.m.voas@saic.com

